Looking for seasonal changes in Imhotep with MIRO

Anthony Lethuillier¹, Paul von Allmen¹, Mark Hofstadter¹, and the MIRO team.

¹Jet Propulsion Laboratory/Calif. Inst. Tech., Pasadena, CA, United States.

© 2017 California Institute of Technology. Government sponsorship acknowledged.

Context

- 1. Context
- 2. Model of the subsurface
- 3. Results

The ToO#7:

 First observation: October 27th 2014 as a single swath.

Figure 1: NAVCAM image of the Imhotep region with indicated the 2014 and 2016 swaths. Copyright: ESA/Rosetta/NAVCAM

Context

- 1. Context
- 2. Model of the subsurface
- 3. Results

The ToO#7:

- First observation: October 27th 2014 as a single swath.
- Second observation: July 9th 2016 as a raster scan.

Figure 1: NAVCAM image of the Imhotep region with indicated the 2014 and 2016 swaths. Copyright: ESA/Rosetta/NAVCAM

Context

- 1. Context
- 2. Model of the subsurface
- 3. Results

The ToO#7:

- First observation: October 27th 2014 as a single swath.
- Second observation: July 9th 2016 as a raster scan.
- Objective: observe the same area twice with similar high spatial resolution.

Figure 1: NAVCAM image of the Imhotep region with indicated the 2014 and 2016 swaths. Copyright: ESA/Rosetta/NAVCAM

Measurements

- 1. Context
- 2. Model of the subsurface
- 3. Results

Figure 2: NAVCAM image of the Imhotep region with indicated the 2014 and 2016 swaths. Copyright: ESA/Rosetta/NAVCAM

Resolution	SMM	MM
October 2014	$\approx 20m$	$\approx 60 m$
July 2016	≈ 30 <i>m</i>	≈ 90 <i>m</i>

The 2016 raster scan intersected the 2014 swath a total of 14 times.

What measurements to use?

- 1. Context
- 2. Model of the subsurface

0.7

Thermal and radiative model

- 1. Context
- 2. Model of the subsurface
- 3. Results

 $Figure \ 3: \ Simplified \ thermal \ model \ of \ the \ subsurface \ of \ 67P/C-G, \ indicating \ the \ processes \ at \ play$

Thermal and radiative model

- 1. Context
- 2. Model of the subsurface
- 3. Results

Fit of the model to the measurements - 2014

- 1. Context
- 2. Model of the subsurface
- 3. Results

Fit of the model to the measurements - 2016

- 1. Context
- 2. Model of the subsurface
- 3. Results

Constraints of the subsurface 2014

- 1. Context
- 2. Model of the subsurface
- 3. Results

Anthony Lethuillier 03/13/2018 Rosetta US co-I meeting

Constraints of the subsurface 2016

- 1. Context
- 2. Model of the subsurface
- 3. Results

Anthony Lethuillier 03/13/2018 Rosetta US co-I meeting

Changes in the subsurface properties

- 1. Context
- 2. Model of the subsurface
- 3. Results

Phase	2014	2016
Dust	0-28%	0-32%
Water ice	45-70%	30-60%
Vacuum	30-55%	40-70%

Conclusions

- 1. Context
- 2. Model of the subsurface
- 3. Results

• The fit of the model to the measurements can still be improved.

Conclusions

- 1. Context
- 2. Model of the subsurface
- 3. Results

- The fit of the model to the measurements can still be improved.
- Values presented and error bars are not final

Conclusions

- 1. Context
- 2. Model of the subsurface
- 3. Results

- The fit of the model to the measurements can still be improved.
- Values presented and error bars are not final
- Between the 2014 (before perihelion) and 2016 (after perihelion) the constraints on the subsurface shift towards lower water ice fraction and densities.

Perspectives

- 1. Context
- 2. Model of the subsurface
- 3. Results

 The model used in this work offers a powerful tool to investigate the subsurface of 67P/C-G using MIRO data and can help constrain the composition of the subsurface and its evolution through time.

Perspectives

- 1. Context
- 2. Model of the subsurface
- 3. Results

- The model used in this work offers a powerful tool to investigate the subsurface of 67P/C-G using MIRO data and can help constrain the composition of the subsurface and its evolution through time.
- More parameters need to be investigated in order to better fit the measurements of the Imhotep region measurements.

Perspectives

- 1. Context
- 2. Model of the subsurface
- 3. Results

- The model used in this work offers a powerful tool to investigate the subsurface of 67P/C-G using MIRO data and can help constrain the composition of the subsurface and its evolution through time.
- More parameters need to be investigated in order to better fit the measurements of the Imhotep region measurements.
- MIRO made observations of Imhotep at other times, and these will be included in future studies.

